Synergetic Cooperation of microRNAs with Transcription Factors in iPS Cell Generation

نویسندگان

  • Jie Chen
  • Guiying Wang
  • Chenqi Lu
  • Xudong Guo
  • Wujun Hong
  • Jiuhong Kang
  • Jianmin Wang
چکیده

Induced pluripotent stem (iPS) cells were first generated by forced expression of transcription factors (TFs) in fibroblasts. Recently, iPS cells have been generated more rapidly and efficiently using miRNAs with or without other transcription factors. However, the specific and collaborative roles of miRNAs and transcription factors in pluripotency acquisition and maintenance remain to be further investigated. Here, based on the miRNA profiling in mouse embryonic fibroblasts (MEFs), MEFs infected with Oct3/4, Sox2, Klf4 and c-Myc (OSKM) for 1, 2, 4, or 8 day, two iPS cell lines and ES cells, representing iPS activation and maintenance steps, we found that two unique miRNA sets are responsible for different steps of iPS generation, and the miRNA expression profiles of iPS cells are very similar to that of ES cells. Furthermore, we searched for transcription factors binding sites at the promoter regions of up-regulated miRNAs, and found that up-regulated miRNAs such as the miR-429-200 and miR-17 clusters are directly activated by exogenous TFs. The GO and pathway enrichment for candidate target gene sets of miRNAs or OSKM provided a clear picture of division and collaboration between miRNAs and OSKM during completion of the iPS process. Compared with the pathways regulated by OSKM, we found that miRNAs play critical roles in regulating iPS-specific pathways, such as the adherens junction and Wnt signaling pathways. Furthermore, we blocked miRNA expression using Dicer knockdown, and found that the level of miRNAs was decreased following this treatment, and the efficiency of iPS generation was significantly repressed. By combining high-throughput analysis, biostatistical analysis and functional experiments, this study provides new ideas for investigating the important roles of miRNAs, the mechanisms of miRNAs and related signaling pathways, and the potential for many more applications of miRNAs in somatic cell reprogramming.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

سلول‏های بنیادی پرتوان القایی از تولید تا کاربرد: مقاله مروری

Embryonic stem cells are pluripotent stem cells which have the ability to indefinitely self-renew and differentiate into all differentiated cells of the body. Regarding their two main properties (unlimited self-renewal and multi-lineage differentiation), these cells have various biomedical applications in basic research and cell based therapy. Because the transplantation of differentiated cells...

متن کامل

Molecular Mechanisms of Induced Pluripotency

In this review the distinct aspects of somatic cell reprogramming are discussed. The molecular mechanisms of generation of induced pluripotent stem (iPS) cells from somatic cells via the introduction of transcription factors into adult somatic cells are considered. Particular attention is focused on the generation of iPS cells without genome modifications via the introduction of the mRNA of tra...

متن کامل

Functional recapitulation of smooth muscle cells via induced pluripotent stem cells from human aortic smooth muscle cells.

RATIONALE Generation of induced pluripotent stem (iPS) cells has been intensively studied by a variety of reprogramming methods, but the molecular and functional properties of the cells differentiated from iPS cells have not been well characterized. OBJECTIVE To address this issue, we generated iPS cells from human aortic vascular smooth muscle cells (HASMCs) using lentiviral transduction of ...

متن کامل

Functional roles of pluripotency transcription factors in mesenchymal stem cells

Pluripotency, the capacity of a cell to give rise to differentiated derivatives that represent each of the three primary germ layers, belongs to the cells that are located within the inner cell mass (ICM) of the developing blastocyst. Functional studies have identified a group of transcription factors, the pluripotency transcription factors that affect the pluripotent capacity. Within this grou...

متن کامل

Successful differentiation to T cells, but unsuccessful B-cell generation, from B-cell-derived induced pluripotent stem cells.

Forced expression of certain transcription factors in somatic cells results in generation of induced pluripotent stem (iPS) cells, which differentiate into various cell types. We investigated T-cell and B-cell lineage differentiation from iPS cells in vitro. To evaluate the impact of iPS cell source, murine splenic B-cell-derived iPS (B-iPS) cells were generated after retroviral transduction of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012